Stream Processing of a Neural Classifier I
نویسندگان
چکیده
INTRODUCTION An Artificial Neural Network (ANN) is a computational structure inspired by the study of biological neural processing. Although neurons are considered as very simple computation units, inside the nervous system, an incredible amount of widely interconnected neurons can process huge amounts of data working in a parallel fashion. There are many different types of ANNs, from relatively simple to very complex, just as there are many theories on how biological neural processing works. However, execution of ANNs is always a heavy computational task. Important kinds of ANNs are those devoted to pattern recognition such as Multi-Layer Perceptron (MLP), Self-Organizing Maps (SOM) or Adaptive Resonance Theory (ART) classifiers (Haykin, 2007). Traditional implementations of ANNs used by most of scientists have been developed in high level programming languages, so that they could be executed on common Personal Computers (PCs). The main drawback of these implementations is that though neural networks are intrinsically parallel systems, simulations are executed on a Central Processing Unit (CPU), a processor designed for the execution of sequential programs on a Single Instruction Single Data (SISD) basis. As a result, these heavy programs can take hours or even days to process large input data. For applications that require real-time processing, it is possible to develop small ad-hoc neural networks on specific hardware like Field Programmable Gate Arrays (FPGAs). However, FPGA-based realization of ANNs is somewhat expensive and involves extra design overheads (Zhu & Sutton, 2003). Using dedicated hardware to do machine learning was typically expensive; results could not be shared with other researchers and hardware became obsolete within a few years. This situation has changed recently with the popularization of Graphics Processing Units (GPUs) as low-cost and high-level programmable hardware platforms. GPUs are being increasingly used for speeding up computations in many research fields following a Stream Processing Model This article presents a GPU-based parallel implementation of a Fuzzy ART ANN, which can be used both for training and testing processes. Fuzzy ART is an unsupervised neural classifier capable of incremental learning, widely used in a universe of applications as medical sciences, economics and finance, engineering and computer science. CPU-based implementations of Fuzzy ART lack efficiency and cannot be used for testing purposes in real-time applications. The GPU implementation of Fuzzy ART presented in this article speeds up computations more than 30 times with respect to a CPU-based C/C++ development when executed on an NVIDIA 7800 GT GPU.
منابع مشابه
A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملبهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکههای عصبی
This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملStream Processing of a Neural Classifier II
This article presents a real-time Fuzzy ART neural classifier for skin segmentation implemented on a Graphics Processing Unit (GPU). GPUs have evolved into powerful programmable processors, becoming increasingly used in time-dependent research fields such as dynamics simulation, database management, computer vision or image processing. GPUs are designed following a Stream Processing Model and e...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009